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About This Report 

With recent advancements in commercial products, such as OpenAI’s ChatGPT, Anthropic 
AI’s Claude, Meta’s Llama, and other large language models, the topic of artificial intelligence 
(AI) has expanded in the public discourse. And, as AI capabilities develop, there has been 
increasing concern about their security implications. In this report, we survey algorithmic 
improvements from numerical analysis, operations research, and computer science; identify 
some common channels of advancement; and then describe the channels by which AI might 
advance. We also describe the implications that algorithmic improvement may have on AI 
advancement over the next few years and discuss some indicators that might point to such 
advancements. The purpose of this research is to present issues to consider regarding the future 
algorithmic advancement. 

This work is intended to be of interest to both policymakers and a more general audience 
looking for information about algorithmic advancement in AI. However, portions of this report 
assume that the reader has familiarity with algorithms in general and machine learning 
algorithms in particular, and some of the content in the appendixes relies on an understanding of 
advanced mathematics, including numerical analysis. 

The research in this report was conducted between October 2023 and August 2024. This 
predates the unveiling of DeepSeek-V3 in late December 2024.1 DeepSeek-V3 purportedly 
outperforms similar open-source language models and performs comparably to leading closed-
source models while requiring less compute for full training; it may provide an important 
example of an algorithmic advancement.2 However, the authors made minor revisions and 
updates to the report through February 12, 2025. 

Technology and Security Policy Center 
RAND Global and Emerging Risks is a division of RAND that delivers rigorous and 

objective public policy research on the most consequential challenges to civilization and global 
security. This work was undertaken by the division’s Technology and Security Policy Center, 
which explores how high-consequence, dual-use technologies change the global competition and 
threat environment, then develops policy and technology options to advance the security of the 

 
1 Cade Metz and Meaghan Tobin, “How Chinese A.I. Start-Up DeepSeek Is Competing with Silicon Valley Giants,” 
New York Times, January 23, 2025. 
2 DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang 
Zhao, Chengqi Deng, Chenyu Zhang, et al., “DeepSeek-V3 Technical Report,” arXiv, version 1, December 27, 
2024. 
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Summary 

With recent advancements in commercial products, such as OpenAI’s ChatGPT, Anthropic 
AI’s Claude, Meta’s Llama, and other large language models, the topic of artificial intelligence 
(AI) has expanded in the public discourse. And, as AI capabilities develop, there has been 
increasing concern about their security implications. In this report, we make evidence-based 
projections about the direction and pace of algorithmic advancements to help inform 
policymaking. We describe several possible channels for algorithmic improvement related to AI 
and explore the implications of how progress might be made along each of those channels.3  

Key Findings 
Our research on the direction and pace of algorithmic advancements revealed the following 

key findings: 

• The two potentially high-impact channels for algorithmic improvement involve (1) 
generating synthetic data or pruning existing data to produce datasets better suited for 
training AI and (2) increasing data efficiency through improved algorithms that are either 
less computationally costly than transformers (such as Mamba) or more effective per 
iteration than transformers (such as Kolmogorov-Arnold Networks).4 There is also 
potential for both improvements to happen more or less simultaneously. 

• One wild-card channel would be the development of alternative criteria (which we 
loosely refer to in this report as objective functions) for training AI systems that better 
match commercially useful performance measures. 5 

• There are three near-term futures that depend on different levels of advancement along 
the two high-impact channels. 

- If data limitations are binding: A future scenario is possible in which the 
unavailability of additional data could prevent models from continuing to scale 
efficiently, and that could lead to small, focused AI systems dominating the market. 

- If algorithms fail to scale: In a future in which additional data can be obtained 
through synthetic generation (or some other mechanism)6 but new algorithms are not 
able to efficiently extract meaningful performance gains by including those additional 
data, then work on large models could continue, but small AI systems would likely 

 
3 For the purposes of this report, changes to an algorithm are an improvement if they lead to enhanced performance 
measures or reduced effort and associated resource requirements (or both) for a given task. 
4 We make no claim that algorithmic improvements will or will not be widely adopted for commercial applications. 
5 Many models use the cross-entropy loss function as the primary objective for training. Some models pair that with 
reinforcement learning or reinforcement learning through human feedback to improve performance. Alternatives to 
these objectives could lead to substantial improvements. 
6 For instance, training on nontext modalities. 
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dominate.7 Essentially, if there are diminishing returns to scale with additional data, 
then larger models might not be commercially viable. 

- If algorithms continue to advance: In a future in which data are abundant and 
algorithms are more efficient in using those data, then ever-larger models are likely to 
be a significant factor in AI research for the near term. 

• One implication of algorithmic advancement is that export controls on hardware—such 
as restrictions on the export of high-end chips to China that were made in October 2022, 
October 2023, December 2024, and January of 20258—could have muted effects, 
depending on the path of algorithmic advancement. As described in a 2024 Center for a 
New American Security report,9 if algorithmic improvements continue to be widely 
available, then hardware-restricted actors (such as China) will be able to train models and 
be only a few upgrade cycles behind the frontier.  

 
7 For a detailed discussion of which domains might benefit from use of synthetic data, see Pablo Villalobos, Anson 
Ho, Jaime Sevilla, Tamay Besiroglu, Lennard Heim, and Marius Hobbhahn, “Will We Run Out of Data? Limits of 
LLM Scaling Based On Human-Generated Data,” arXiv, version 2, June 4, 2024, pp. 7–9. 
8 Bureau of Industry and Security, “Commerce Strengthens Restrictions on Advanced Computing Semiconductors 
to Enhance Foundry Due Diligence and Prevent Diversion to PRC,” Office of Congressional Affairs, January 15, 
2025. 
9 Paul Scharre, “Future-Proofing Frontier AI Regulation,” Center for a New American Security, March 13, 2024. 
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Chapter 1. Introduction 

With recent advancements in commercial products—such as OpenAI’s ChatGPT (which was 
released in 2018), 10 Anthropic AI’s Claude, Meta’s Llama, and other large language models 
(LLMs)—the topic of artificial intelligence (AI) has expanded in the public discourse. And, as 
AI capabilities develop, there has been increasing concern about their security implications. To 
assess the security implications associated with AI, policymakers need to have estimates of the 
direction and pace of algorithmic advancements. To that end, we seek to address the question: 
How will AI capabilities advance in the near future because of algorithms?  

What Constitutes Algorithmic Improvement? 
There are many ways to define what constitutes an algorithmic improvement and what 

distinguishes an improvement from a new algorithm, but none of the options are particularly 
robust. A study by Yash Sherry and Niel C. Thompson focuses on algorithms for problems with 
exact solutions that are globally optimal and defines an improvement in terms of solving the 
same problem with fewer operations.11 Alternatively, research by Katja Grace takes a very 
different approach and evaluates a variety of algorithms, including machine learning algorithms, 
using a variety of performance measures. These measures include the Elo rating system,12 the 
time required for problems of a given complexity, the size of problems that can be solved, and 
sample statistics, such as probabilities of detection.13 The report by Grace focused on the 
empirical performance of algorithms, including both hardware and software advances, while the 
focus of our work in this report is on algorithmic improvements in the absence of hardware 
improvements. Hence, we are keenly interested in algorithmic performance on specific tasks 
relative to the effort and associated resources required.  

For the purposes of this report, changes to an algorithm are an improvement if, for a given 
task, they lead to (1) enhanced performance measures or (2) reduced effort and associated 
resource requirements (or both). In different cases, the improvements could be more subjective 
(e.g., sample statistics on human preferences) or more objective (e.g., a reduction in the number 

 
10 Anam Nazir and Ze Wang, “A Comprehensive Survey of ChatGPT: Advancements, Applications, Prospects, and 
Challenges,” Meta-Radiology, Vol. 1, No. 2, 2023. 
11 Yash Sherry and Neil C. Thompson, “How Fast Do Algorithms Improve?” Proceedings of the IEEE, Vol. 109, 
No. 11, November 1, 2021.  
12 An Elo rating system is a method of calculating the relative skill level of players in zero-sum games, such as 
chess, baseball, and pocket billiards. This rating system has more recently been applied to LLMs. 
13 Katja Grace, “Algorithmic Progress in Six Domains,” Machine Intelligence Research Institute, Technical Report 
2013-3, December 9, 2013.  
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of floating point operations [FLOPs]14 needed to perform a mathematical operation). The 
judgment of the authors will be used to identify what constitutes a task. 

Dimensions of Improvement 
There are several ways to describe algorithmic improvement in AI. One way to frame 

improvement would be with regard to the extensive or intensive margin. The intensive margin 
would include such things as reduced requirements for inputs (e.g., training data, training 
FLOPs,15 or model parameters) or better performance with the same or fewer inputs. Essentially, 
the intensive margin is about efficiency. Improvements along the extensive margin would 
include new capabilities or areas of application—for example, the ability to solve a new class of 
problem that prior models were not able to solve. 

Improvements can occur at different periods: during the training phase, while making post-
training adjustments, or during inference.16 Our focus in this report is on the intensive margin 
during the training phase. Our rationale is that training requires upfront costs that could be a 
barrier to the development of future models, and advancements along the extensive margin are 
generally harder to quantify. That said, some algorithmic changes might result in improvements 
along multiple dimensions or offer improvements along one dimension at the expense of another. 

Approach and Limitations 
To estimate the pace of algorithmic advancement, we first looked at a variety of algorithms 

in numerical analysis, operations research, and computer science to find the mechanisms for 
algorithmic advancement. We then grouped these mechanisms into broad classes and searched 
the computer science literature for discussions about their applicability to LLMs. Finally, we 
describe how these mechanisms could work in the near future to improve the algorithms behind 
LLMs and other foundation models.  

Our approach was not comprehensive, and the algorithms that we assessed were selected by 
examining several textbooks. Thus, we might have missed some relevant mechanisms. 
Additionally, because of the rapid pace at which new research papers are published, our 
examination of the application of these mechanisms is necessarily incomplete. While this study 

 
14 In this report, FLOPs is the plural form of the abbreviation FLOP, which refers to one operation (e.g., addition, 
multiplication) performed on decimal (or floating point) numbers. FLOPs per second (FLOP/s) refers to the number 
of FLOPs that a processor can perform in one second. See Lennart Heim, “FLOP for Quantity, FLOP/s for 
Performance,” blog, *.xyz, April 14, 2023, and Appendix A for a more detailed discussion of FLOPs and FLOP/s. 
15 See Appendix A. 
16 Inference refers to the post-training period when an AI model is introduced to new data and assessed on its ability 
to recognize patterns in and make inferences about the new dataset. See Appendix A for a more detailed discussion 
of different types of training and inference. 
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cannot be considered exhaustive, we do believe that the approach is sufficient to identify broad 
trends and make projections useful for exploring policy options.  

As discussed in the preface, the research in this report was conducted between October 2023 
and August 2024. An important limitation of this report is that the research was conducted before 
DeepSeek unveiled its DeepSeek-V3 language model in December 2024, which appears to be an 
important example of algorithmic improvement.17 According to DeepSeek, their model 
“outperforms other open-source models and achieves performance comparable to leading closed 
models. . . . [And it] requires only 2.788M H800 GPU hours for its full training.”18 DeepSeek-V3 
is described as a mixture-of-experts (MoE) language model that achieves efficient inference and 
cost-effective training by adopting multi-head latent attention and architectural changes to their 
previous model, implementing a new strategy for load balancing, and performing a multi-token 
prediction training objective for stronger performance. Model training was followed by 
supervised fine-tuning (SFT) and reinforcement learning stages to align its performance with 
human preferences.19  

This report discusses similar mechanisms of algorithmic improvement but is not informed by 
the specific details of DeepSeek-V3. For instance, a consideration of DeepSeek-V3 was not a 
part of our assessment in Appendix D of the utility of reinforcement learning from human 
feedback (RLHF) in advancing AI algorithms. Details about the role of reinforcement learning 
with DeepSeek-V3 are described in a technical report published in January 2025.20 

Organization of This Report 
Chapter 2 describes the relevant literature on algorithmic advancement related to AI. Then, 

Chapter 3 presents the mechanisms that we have identified for algorithmic advancement and 
discusses how they might apply to AI systems. The final chapter describes how AI algorithms 
might advance in the near future and the implications these advancements could have.  

We also include four appendixes: Appendix A provides background information on the 
computational effort associated with machine learning algorithms, which is intended to provide 
useful context for the interested reader; Appendix B includes details about how we identified the 
mechanisms of algorithmic improvements; Appendix C describes the specific implications of 

 
17 Cade Metz and Meaghan Tobin, “How Chinese A.I. Start-Up DeepSeek Is Competing with Silicon Valley 
Giants,” New York Times, January 23, 2025. 
18 DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang 
Zhao, Chengqi Deng, Chenyu Zhang, et al., “DeepSeek-V3 Technical Report,” arXiv, version 1, December 27, 
2024. 
19 DeepSeek-AI et al., 2024. 
20 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao 
Zhu, Shirong Ma, Peiyi Wang, et al., “DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via 
Reinforcement Learning” arXiv, version 1, January 22, 2025. 
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algorithmic advancement on export control policies; and Appendix D contains a case study 
related to RLHF.  
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Chapter 2. Literature on Algorithmic Advancement 

We are not the first to investigate algorithmic improvements relevant to AI. In this chapter, 
we explore existing literature on algorithmic improvement, especially studies that are relevant to 
the training phase of an AI system’s development. 

The report by Grace mentioned in Chapter 1 examined a handful of problem types on which 
there has been algorithmic progress, including Boolean satisfiability, chess and Go, large number 
factorization, physics simulations, mixed integer programming, scheduling, and a variety of 
machine learning problems. For each of these problems, Grace found literature summarizing 
performance progress and assessed the share of the progress that was attributable to algorithmic 
advancement. Using these examples, she determined that algorithmic advancement accounted for 
50 to 100 percent of improved performance.21 

Sherry and Thompson measured the pace of algorithmic innovation for 128 families of exact 
algorithms and 310 algorithmic improvements. With exact algorithms, the result of a specific 
problem solved by different algorithms within each family will be identical, so an improvement 
would be in the arithmetic operation count that an algorithm requires to reach the exact solution. 
Sherry and Thompson found that the pace and scale of improvement varied substantially; some 
algorithm families saw no substantive improvements, and others saw improvements that were 
substantially faster than the hardware advancement pace described in Moore’s Law.22 While 
their study provides an empirical assessment of algorithmic advancement, it does not provide a 
forecast that is relevant to the pace of advancement in AI.23  

Using published characteristics of models from 2012 to 2023 and applying cross-entropy loss 
function to measure performance, Ho et al. estimated that 5 to 40 percent of LLM performance 
increases following pretraining were attributable to algorithmic improvements.24 The paper 
identifies two key innovations that resulted in the majority of the performance increase: the 

 
21 Grace, 2013. 
22 Moore’s Law is a projection, based on empirical observation, that the number of transistors per square inch on a 
microchip will double every two years. This increase in density relates to an increase in computing power. 
23 Yash Mohan Sherry and Neil C. Thompson, “Measuring the Pace of Innovation: Evidence From Algorithms,” 
conference paper, SI 2020 IT and Digitization, National Bureau of Economic Research, July 2020. 
24 Anson Ho, Tamay Besiroglu, Ege Erdil, David Owen, Robi Rahman, Zifan Carl Guo, David Atkinson, Neil 
Thompson, and Jaime Sevilla, “Algorithmic Progress in Language Models,” arXiv, version 1, March 9, 2024. 
A cross-entropy loss function is a way to evaluate machine learning algorithms. In general, a cross-entropy loss 
function compares an actual data point(s) to the output from the machine learning model. In practice, these 
comparisons are aggregated to elicit specific behavior in a model. Essentially, these measures evaluate how well the 
model matches the training data. 
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introduction of the transformer (a deep learning architecture) and the scaling law from Hoffmann 
et al., 2022.25  

In the Stanford Institute for Human-Centered AI’s 2024 AI Index Report, the authors 
collected information on AI advancement.26 They note that AI performance has been 
approaching or surpassing human performance on nine technical performance benchmarks. 
However, they also note that “[p]erformance on these benchmarks has stagnated in recent years, 
indicating either a plateau in AI capabilities or a shift among researchers toward more complex 
research challenges.”27  

Leopold Aschenbrenner reviewed advancements in LLMs and projected the growth 
forward.28 He estimates that there has been about half an order of magnitude of gains in model 
improvement per year attributable to algorithmic advancement and, if this trend continues into 
2027, he predicts that AI systems will be able to do the work of AI researchers.  

There is no clear consensus among these studies about the pace or direction of algorithmic 
advancement. Furthermore, although Aschenbrenner and the authors of the 2024 AI Index Report 
discuss forward-looking paths for advancement, they have somewhat divergent interpretations of 
the trends. Specifically, they disagree about whether AI systems are plateauing at or near human 
levels of performance. Another key point of disagreement is about whether continued 
improvements in the performance of a cross-entropy loss function that is based on predicting the 
next token is sufficient to achieve material improvements in commercially relevant performance 
measures.29  

We attempt to resolve these issues by approaching this problem slightly differently than 
earlier studies. By focusing on the mechanisms of improvement rather than the pace of 

 
25 In this context, a scaling law is an empirical relationship between the number of parameters, training computation, 
and model performance. Hoffman et al. trained more than “400 language models ranging from 70 million to over 16 
billion parameters on 5 to 500 billion tokens” and found that, “for compute-optimal training, the model size and the 
number of training tokens should be scaled equally: for every doubling of model size the number of training tokens 
should also be doubled” (Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, 
Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al., “Training 
Compute-Optimal Large Language Models,” arXiv, version 1, March 29, 2022, p. 1). An earlier scaling law was 
presented in Jared Kaplan, Sam McCandish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott 
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei, “Scaling Laws for Neural Language Models,” arXiv, version 1, 
January 23, 2020. 
26 Nestor Maslej, Loredana Fattorini, Raymond Perrault, Vanessa Parli, Anka Reuel, Erik Brynjolfsson, John 
Etchemendy, Katrina Ligett, Terah Lyons, James Manyika, Juan Carlos Niebles, Yoav Shoham, Russell Wald, and 
Jack Clark, The AI Index 2024 Annual Report, AI Index Steering Committee, Institute for Human-Centered AI, 
Stanford University, April 2024. 
27 Maslej et al., 2024, p. 82. This apparent stagnation represents, in part, a limitation of appropriate benchmarks for 
the directions relevant to AI advancement and a ceiling for possible performance on some of the benchmarks. 
28 Leopold Aschenbrenner, Situational Awareness: The Decade Ahead, June 2024. 
29 By commercially relevant, we mean AI systems that produce sufficient value that they are commercially viable, 
which is to say that the market for the output from those systems generates sufficient revenue to at least pay for the 
marginal cost of operating the model. 
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improvement, we are not treating advancements as exogenous but instead we present a summary 
of paths that have empirically led to algorithmic advances along the intensive margin, specify 
how these paths could be applied to AI systems, and then describe early indicators that could be 
a sign of how AI systems are likely to advance.  
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Chapter 3. Mechanisms for Algorithmic Advancement 

Based on our review of canonical problem types in numerical analysis, operations research, 
and computer science described in Appendix B, we have identified the following key channels 
by which algorithms can improve: 

• Fewer iterations: Reducing the number of iterations saves computational costs. 
• Stochasticity: Injecting randomness can accelerate convergence by moving away from 

local optima, thereby improving performance. 
• Reducing precision: Using fewer significant digits can reduce storage proportionally and 

the computational costs more than proportionally, in some contexts.30 
• Sparsity: Specialized algorithms can take advantage of patterns of sparsity in data to 

work faster than a dense set and reduce storage costs. 
• Data tailoring: Algorithms can be tailored to take advantage of the properties of data 

types. 
• Objective functions: Alternative objective functions can allow for less computational 

costs or improved performance. 
• Complexity: Alternative algorithms might trade the pace of convergence with the 

computational cost of each iteration. 

In this chapter, we will discuss how each of these channels are or could be applied to AI and 
discuss the implications for the near future. 

Channels Unlikely to Lead to Substantial Improvements 
Reviewing the channels for improvement, we identified three that we think are unlikely to 

lead to significant algorithmic improvement. 

Fewer Iterations 

Models that use the empirically demonstrated scaling laws previously described are applying 
nearly the optimal amount of compute for a given corpus and parameter count, so we do not 
believe that a continued reduction in the number of forward and backward propagation iterations 
will yield significant improvements in the near term. Similarly, although data points can be fed 
through the model multiple times during training to improve performance, the performance 
effects can be tracked, so decreasing the iterations per data point is also unlikely to lead to 
substantial improvements. 

 
30 There is not an easily formulated relationship between precision and computational costs because this relationship 
will fundamentally be context dependent. However, Appendix B provides some empirical examples that were 
roughly quadratic improvements in computational costs. 
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However, if existing models are overfitted to their training data, then there could be some 
benefit to reducing the training iterations. For smaller scale machine learning problems, such 
techniques as k-cross fold validation are useful for reducing the risk of overfitting, but that would 
be very computationally expensive for something on the scale of an LLM. Other approaches to 
reducing the risk of overfitting, such as ensemble approaches, are being deployed in some 
capacity today. That said, even if overfitting is a concern, reducing the number of iterations 
likely would not dramatically increase performance, although it would reduce the computational 
costs proportional to the reduction in iterations. 

Additionally, because the inference costs are proportional to the number of parameters in a 
model (not in the training cost of the model), reducing the number of iterations used in training 
would not materially affect the inference costs. 

Stochasticity 

Randomness (or quasirandomness) is already a factor in LLMs and other AI systems through 
stochastic gradient descent during pretraining, the selection of starting values for some diffusion 
models, and various other points in the architecture. In these cases, stochasticity is typically used 
to help the algorithms refrain from getting caught in a local optimum. Given that stochasticity is 
commonly used in many parts of AI systems already, it is not obvious from our review where 
additional stochasticity could lead to improvements in performance. 

Reducing Precision 

By reducing the number of bits to encode information, storage requirements are reduced 
proportionally to the degree of reduction, and the computational effort could be reduced by the 
square of the bit count, depending on the types of operations performed. This channel can apply 
to both the training and inference stages of modeling.31 It is used in many LLMs, particularly for 
deployment on edge devices—but it leads to a one-time improvement. Thus, this form of 
quantization will not lead to repeated advancements but instead will allow frontier models to be 
scaled down for broader deployment. 

Channels with Potential to Lead to Some Improvements 
One channel (sparsity) is likely to result in some sustained and repeatable improvements, but 

not on the scale of orders of magnitude. 

 
31 For example, see Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang, Li 
Dong, Ruiping Wang, Jilong Xue, and Furu Wei, “The Era of 1-Bit LLMs: All Large Language Models Are in 1.58 
Bits,” arXiv, version 1, February 27, 2024. 
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Sparsity 

The scaling laws described in both the Kaplan and Hoffmann et al. articles mentioned in 
Chapter 2 applied to dense neural networks. If sparsity can be introduced (for instance, through 
pruning or regularization) in a way that does not substantially deteriorate performance, the 
inference FLOPs would decline proportionally. Furthermore, if sparsity patterns were known in 
advance of training, then mathematical techniques might be developed to exploit those patterns, 
and training FLOPs could also be reduced proportionally.  

MoE, a type of dynamic compute graph, is another approach to exploiting sparsity. Much 
like random forests are mixes resulting from a variety of classification and regression trees, MoE 
mix results from a variety of smaller models. A study by Xu Owen He found that using a large 
number of small experts (more than 1 million) could result in higher accuracy for a fixed 
computational cost than a comparably sized non-MoE LLM.32 Similarly, Tal Shnitzer et al. 
found that performance could be improved by identifying the “best model” for a given task from 
a pool of experts and then applying that model to the task.33  

Advancements related to sparsity should be expected to result in incremental improvements 
or refinements to a system rather than improvements on the scale of orders of magnitude. 

Channels with Potential to Lead to Substantial Improvements 
There are three channels that have the potential to achieve large improvements in algorithmic 

performance. For these channels, we describe the research we reviewed and some potential 
indicators for whether a specific channel will result in sustained and repeatable advancement. 

Data Tailoring 

There have been several studies assessing options for pruning data or otherwise improving 
the quality of data used for models. These have been found to produce comparable results with 
substantially less data. In different contexts, studies have found that models trained on datasets 
that were 20 to 99 percent selectively pruned resulted in minimal reductions in performance.34 
Additionally, Wang et al. developed an approach to efficiently generate high-quality synthetic 

 
32 Xu Owen He, “Mixture of a Million Experts,” arXiv , version 1, July 4, 2024.  
33 Tal Shnitzer, Anthony Ou, Mírian Silva, Kate Soule, Yuekai Sun, Justin Solomon, Neil Thompson, and Mikhail 
Yurochkin, “Large Language Model Routing with Benchmark Datasets,” arXiv, version 1, September 27, 2023. 
34 The selection processes for the pruning are described in the specific papers and future studies might find 
generalizable approaches for the pruning process. See Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya 
Ganguli, and Ari Morcos, “Beyond Neural Scaling Laws: Beating Power Law Scaling via Data Pruning,” Advances 
in Neural Information Processing Systems 35, proceedings of the 36th International Conference on Neural 
Information Processing Systems, 2022; and Raphaël Pestourie, Youssef Mroueh, Chris Rackauckas, Payel Das, and 
Steven G. Johnson, “Physics-Enhanced Deep Surrogates for Partial Differential Equations,” Nature Machine 
Intelligence, Vol. 5, December 2023. 
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data for use in reinforcement learning (RL).35 These methods distill large datasets into smaller 
samples that allow for more-efficient training. 

Alternatively, there are methods that tailor data by synthetically generating examples to 
improve performance. For example, researchers at Google DeepMind described an approach in 
which synthetic training data were generated for geometric proofs and used to fine-tune a model 
that achieved a silver medal score on the International Mathematical Olympiad test.36 This type 
of fine-tuned model shows that synthetic data can be used to produce highly effective models for 
a narrow class of problems. It is plausible to believe that similar approaches could be used to 
generate synthetic data for other narrow problems if there is sufficient commercial interest to 
warrant the attention. However, these examples are limited to narrow types of problems, and 
there has not yet been a published approach on a generalized synthetic generative tool for 
training frontier models. This is one approach that can be thought of as operating on the 
extensive margin, because training on the tailored data results in a model with new capabilities, 
such as producing geometry proofs.  

The development of a generalized data pruning approach would be an indicator that training 
costs could become 1 percent or less of the training costs based on existing scaling laws.37 In 
other words, models that use this approach might be able to scale (data permitting) 100 times for 
the same cost as a prior generation model. However, while a method to generate generalized 
synthetic data could result in models that were highly capable for a variety of sophisticated 
knowledge tasks, such an approach would result in a dataset that covered a large variety of topics 
and epistemologies.  

Fundamentally, if a data curation (either pruning or generating) approach could select the 
precise quantity and disposition of the data to be fed into a pretraining algorithm to optimize the 
information gain, then a new class of scaling laws could be developed to maximize 
computational efficiency. Consider the following examples: If a system were trained on the 
writings of Jack Torrance from The Shining, there would be no marginal benefit from an 
additional sentence, page, volume, or library because of the repetition of “All work and no play 
makes Jack a dull boy.”38 The marginal information content is zero. Similarly, a dataset 
consisting of every grammatically correct English language sentence of at most twenty words 
could be used directly to train a model about the validity of English language sentences, but 

 
35 Zhilin Wang, Yi Dong, Olivier Delalleau, Jiaqi Zeng, Gerald Shen, Daniel Egert, Jimmy J. Zhang, Makesh 
Narsimhan Sreedhar, and Oleksii Kuchaiev, “HelpSteer2: Open-Source Dataset for Training Top-Performing 
Reward Models,” arXiv, version 1, June 12, 2024. 
36 Google DeepMind, “AI Achieves Silver-Medal Standard Solving International Mathematical Olympiad 
Problems,” July 25, 2024.  
37 One potential area for exploration is using a measurement of information entropy to either prune existing data or 
generate synthetic data. 
38 The Shining, dir. Stanley Kubrick, Warner Bros., 1980. 
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without a mechanism that pruned for factual content, this model would not be useful for 
providing factual statements.  

Objective Functions 

For any optimization problem, the goal is to find the input value (or values) that maximize 
(or minimize) the objective function. A common objective function used in machine learning is 
the cross-entropy loss function, which calculates the difference between the predicted value and 
the actual value for examples in the training set. For LLMs, these values are based on the next 
word or token in a sequence. While the cross-entropy loss function is a useful measure of 
performance, it is not the precise objective function of users during the inference stage of an 
LLM. Users might want factual information, stylistic content, or something else that could be 
more or less correlated with the cross-entropy loss function. Thus, there is an inherent 
misalignment between an LLM’s actual commercial relevance and the performance measures it 
achieves during pretraining and fine-tuning.39 Techniques, such as RLHF, have been found to 
result in superior performance but are very expensive to implement.40 See Appendix D for a case 
study of this technique. 

The invention of alternatives to the cross-entropy loss function that are both efficiently 
computable and closer to users’ preferences would be an indicator of a faster pace in AI 
development. The magnitude of this effect is fully dependent on the details, so we do not have an 
estimate for the likely effect. 

Complexity Tradeoffs 

Alternative algorithms to transformers—such as Mamba,41 which is subquadratic in 
computational complexity, or Kolmogorov-Arnold Networks,42 which require many fewer 
iterations because of better performance per iteration—have been found to perform better than 
similarly sized transformers.43 Alternative algorithms such as these could be less computationally 
intensive to train for a given size; therefore, a better performing model could be developed for a 
fixed budget of compute than with a transformer-based model.  

 
39 A recent advancement that has shown promise is the development of transfer learning, whereby pretrained 
models gather knowledge from one task and apply it to another task (Emmanuella Budu, “What Does Pre-Training a 
Neural Network Mean?” Baeldung, July 21, 2022). 
40 Paul F. Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei, “Deep 
Reinforcement Learning from Human Preferences,” arXiv, version 4, February 17, 2023. 
41 Albert Gu and Tri Dao, “Mamba: Linear-Time Sequence Modeling with Selective State Spaces,” arXiv, version 
1, December 1, 2023. 
42 Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić, Thomas Y. Hou, 
and Max Tegmark, “KAN: Kolmogorov–Arnold Networks,” arXiv, version 2, May 2, 2024. 
43 As one reviewer of this report noted, adoption of Mamba appears to be slow, and that could be, in part, because of 
the significant effort that would be required to deviate from existing methods. 
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So far, these algorithms have been demonstrated to work well on small scales and in limited 
contexts. What is not known is the degree to which the performance of these alternatives can 
scale. Additionally, there could be a substantial incumbency bias for transformers because 
hardware development and other components of AI systems have been optimized for that 
architecture over the past few years. Thus, even if alternatives have superior performance in an 
abstract sense, they might be less likely to be pursued because the costs of switching grow as 
more investments are made around the existing architecture. 

If the performance of these alternative models scales efficiently, it would be an indicator that 
model training costs will decline substantially, particularly for larger models. It is plausible that 
these types of approaches could reduce the cost of training models by at least an order of 
magnitude. Though, for context, an order of magnitude would amount to only a few years’ worth 
of improvement at the pace of AI advancement since the introduction of the transformer.  

Summary of Advancement Channels 
The bottom line is that, in the next few years, there are many plausible paths by which LLMs 

could achieve substantially better performance on a fixed compute budget. In particular, if data 
curation is systematized and transformer alternatives scale, LLMs and large multimodal models 
performing equivalently to today’s state-of-the-art models could plausibly be trained for multiple 
orders of magnitude less compute, and larger models could become exponentially better than 
today’s frontier models. However, if the barriers to advancement previously discussed (e.g., 
learning efficiency, data constraints) are not surmounted, progress in the largest models could 
slow.  
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Chapter 4. Conclusions and Early Indicators 

Based on the different early indicators described at the end of the last chapter, we have 
specified three distinct possible trajectories for the near-term advancement of AI systems. 

Possible Futures 

Data Limitations Are Binding 

If synthetic data generation does not lead to the ability to meaningfully scale future model 
training much past the stock of easily accessible, high-quality public data,44 or if alternative 
architectures are not able to train more efficiently than existing models, then we would not 
expect substantial performance improvements of frontier models in the near future. However, the 
introduction of new datasets could lead to some focused improvements. This would mean that 
the computational demand for training frontier models would not continue to grow and, 
therefore, we should expect a greater relative demand for computational budget for inference.  

In this environment, there could still be substantial advancement on smaller models, 
particularly those models that are tailored to specific problems or modalities. 

Algorithms Fail to Scale  

If synthetic data generation leads to the meaningful scaling of datasets, but alternative 
architectures are not able to train more efficiently than existing approaches, we would expect that 
the frontier models could continue to grow based on the ability to produce additional synthetic 
data. However, the cost of those models would not be worthwhile for most fields. In particular, 
removing data constraints from LLM training would not reduce the cost of inference.  

For example, if synthetic datasets could be generated along the lines of AlphaGeometry and 
AlphaProof for a broad variety of fields,45 but the efficiency by which the models learned from 
those datasets did not substantially improve, it would still take tens or hundreds of millions (or 
more) of generated examples to train models to master a given field. In the absence of substantial 
transfer learning across fields, general models could require tens or hundreds of billions (or 
more) of examples to learn. That would make inference on the larger generalized models more 
expensive than a model specialized for a given task. In that case, specialized models would likely 
be preferred by users, and larger models might not be commercially viable. 

 
44 Villalobos et al., 2024. 
45 Trieu H. Trinh, Yuhuai Wu, Quoc V. Le, He He, and Thang Luong, “Solving Olympiad Geometry Without 
Human Demonstrations,” Nature, Vol. 625, January 18, 2024. 
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Larger models could be developed, but performance improvements would come from larger 
datasets and increased computational spending rather than a more-efficient use of data. If this is 
the case, we expect to see more work in advancing small models because larger models would 
not provide a substantial improvement relative to their computational costs.  

Scaling Continues 

If there are advancements in both synthetic data generation and the efficiency of model 
training, we would expect substantial returns to scale and continued competition to build larger 
models. Furthermore, improvements to computational efficiency during training can also be 
expected to reduce computational costs during inference. In this environment, small models 
could still have a role for niche tasks, such as on edge devices, but efficiency would tend to 
increase with scale, which might outweigh even the small amount of costs and time needed to 
develop niche models.  

Recommendations for Policymaking 
While the pace and trajectory of algorithmic advancement is highly uncertain, there are 

indicators—such as those identified in the previous sections—that can be used to inform 
policymaking related to AI. Therefore, policymakers should consider investing in technology 
scanning capabilities related to algorithmic advancement, particularly in the areas of synthetic 
data generation, data pruning, and the scalability of transformer alternatives. By monitoring these 
types of advancements, policymakers can have some foresight into which of the futures 
discussed in this report is most likely in the near term. 

Additionally, one question this study raises but does not address is the adequacy of the 
objective functions used in existing AI systems. The cross-entropy loss function is conceptually 
very useful for predicting the next token, but algorithms seeking to eke out incremental 
improvements in that metric are outperformed in some tasks when RLHF is applied to the 
pretrained model. Scaling RLHF for training LLMs poses coordination challenges,46 so any 
technology scan should also include progress on post-training adjustments, such as RL, that are 
more easily scalable.47 

When considering international AI competition, improvements in algorithmic efficiency 
might reduce the efficacy of policies that restrict access to computation. We discuss this in more 
detail in Appendix C. 

Additional study will be needed because of the pace of algorithmic improvements and the 
breadth of active research efforts at the frontier.  

 
46 Jian Hu, Xibin Wu, Zilin Zhu, Xianyu, Weixun Wang, Dehao Zhang, and Yu Cao, “OpenRLHF: An Easy-to-Use, 
Scalable and High-Performance RLHF Framework,” arXiv, version 4, November 24, 2024. 
47 A potential example is Anthropic’s Constitutional AI (Anthropic, “Constitutional AI: Harmlessness from AI 
Feedback,” policy memo, December 15, 2022). 
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Appendix A. Background on the Computational Effort Associated 
with Machine Learning Algorithms 

This appendix provides a primer on the computational effort associated with machine 
learning algorithms. It provides basic information (with examples) about types of machine 
learning algorithms and measures of computation for training and for inference.  

Machine Learning Algorithms 
Portions of this report assume that the reader has familiarity with algorithms in general and 

machine learning algorithms in particular. Nonetheless, in this appendix, we provide some 
summary level information and references by which the interested reader can acquire the 
necessary background. An algorithm is a well-defined procedure for transforming a set of input 
values to a set of output values and can be thought of as a tool for solving a well-specified 
computational problem.48 Machine learning is considered a branch in the field of AI and 
computer science concerned with the use of data and algorithms to imitate the way that humans 
learn.49. There are varying definitions of AI. For example, in their book Artificial Intelligence: A 
Modern Approach, AI researchers Peter Norvig and Stuart Russell organize definitions of AI into 
four broad categories: thinking humanly, acting humanly, thinking rationally, and acting 
rationally.50 AI can be further subdivided into types, such as narrow AI, which focuses on 
algorithms for specific tasks, and artificial general intelligence, a state in which machines acquire 
an intelligence equal to or surpassing humans and possess a self-aware consciousness. A 
comprehensive treatment of AI requires delving into a vast array of subjects, including 
philosophy, and will be avoided here. The focus of this report is on practical aspects of machine 
learning, which “involves creating models by training an algorithm to make predictions or 
decisions based on data [and] encompasses a broad range of techniques that enable computers to 
learn from and make inferences based on data without being explicitly programmed for specific 
tasks.”51  

The life cycle of a machine learning algorithm can be categorized into two broad phases: 
training and inference. During the training phase, the algorithm processes data to acquire the 

 
48 For an introduction to algorithms, see Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford 
Stein, Introduction to Algorithms, 3rd ed., MIT Press, 2009. 
49 Cole Stryker and Eda Kavlakoglu, “What Is Artificial Intelligence (AI)?” IBM, August 9, 2024.  
50 Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, 3rd ed., Pearson Education Limited, 
2014, p. 2. 
51 Stryker and Kavlakoglu, 2024. 
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expertise that it will need to make predictions or classifications. During the inference phase, the 
algorithm makes predictions or classifications from novel data. A few examples are explored in 
the following sections. 

Supervised Learning Applications 

The applications described in this section are examples of supervised learning, meaning that 
each feature set in the training data had a corresponding label that specified the desired output. 
Supervised learning usually requires human analysts to provide or at least validate the labels for 
the training data. For instance, consider developing a training set for an image classification 
system. Imagery information (e.g., pixel values or information derived from Fourier-domain 
representations of the pixel values) might provide the feature sets, and human analysts might 
apply their judgment to label each feature set as belonging to a tank versus a truck.  

Least Squares Data Fitting 

Linear algebra procedures for least squares data fitting should be familiar to anyone who has 
completed a course in linear algebra, and, perhaps, this might not seem to be an example of a 
machine learning algorithm. However, consider that training consists of fitting a curve to a 
dataset comprised of a discrete set of inputs, called the feature set, and the corresponding 
outputs, called the labels. Once the model parameters of the curve have been adequately fit to the 
training dataset (as measured by the sum of the squared errors), then the curve can be used to 
make predictions of the output from new input data, which is inference. There is a closed-form 
expression for solving a linear least squares problem and iterative approaches for solving 
nonlinear least squares problems (we will have more to say about types of solutions later in this 
section).52 

Logistic Regression 

This is the process of fitting the parameters logistic function to a training set using maximum 
likelihood criterion and is procedurally similar to least squares data fitting. The characteristic “s” 
shape of a logistic function is useful for classifying features into binary categories. That is, the 
label for each corresponding feature set is associated with one of two categories, such as 
categorizing image features as either belonging to a “tank” or “truck.”53 

Linear Classification and Support Vector Machines  

Linear classification is the process of finding the equations of hyperplanes that separate (or 
classify) input feature sets into their own unique regions (each label pertains to a distinct region). 

 
52 For more information, see Stephen Boyd and Lieven Vandenberghe, “Least Squares Data Fitting,” in Introduction 
to Applied Linear Algebra: Vectors, Matrices, and Least Squares, Cambridge University Press, 2018. 
53 Stephen Boyd and Lieven Vandenberghe, “Statistical Estimation, ” in Convex Optimization, Cambridge 
University Press, 2004. 
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It is not always possible to perfectly classify features into distinct regions; hence, the user might 
have to accept some misclassifications. The support vector machine is a variation of linear 
classification that adds a heuristic to minimize the number of misclassified points. Linear 
classification and support vector machine algorithms can be generalized to use nonlinear 
classification if the nonlinear function is affine in the parameters that define it (e.g., polynomial 
classification). Support vector machines have been used in spam filtering applications.54  

Neural Networks  

Neural networks consist of layers of interconnected logistic functions. The mathematical 
behavior of the output of a logistic function to its inputs provides a useful model of the behavior 
of the output of a neuron in the human brain via its axon terminals to electrical inputs on its 
dendrites. The human brain, which has about 86 billion neurons, represents learning as patterns 
of electrical signaling through networks of neurons. Artificial neural networks are similarly used 
to represent learning as patterns of mathematical signaling through networks of logistic 
functions. Neural networks consist of an input layer, an output layer, and usually one or more so-
called “hidden” layers in between. The output of a neuron from one layer is connected to the 
input of each neuron of the subsequent layer, and there is a weight associated with each 
connection (weights are numerical values in an artificial neural network that are similar to the 
synapses in biological neural networks). The numerical values of the features are provided to the 
input layer. During learning, the values of the weights are adjusted so that the outputs of the 
neurons in the output layer statistically correspond to the desired label.55 Neural networks are 
used for a wide variety of applications, including image classification and natural language 
processing in AI models, such as LLMs. This is an intensely active area of research and there are 
many variations of neural networks.  

Unsupervised Learning Applications 

There are also examples of machine learning algorithms that are unsupervised, meaning that 
the training set consists of only features and no labels. With unsupervised learning, we want the 
machine to learn some relationship between the inputs. We explore some examples in the 
following sections. 

Multivariate Gaussian Model Fitting 

A multivariate Gaussian probability distribution is entirely defined by the mean and 
covariance. Hence, we can use the sample mean and sample covariance associated with a set of 
input data to fit a Gaussian probability distribution and use it to make predictions for novel data. 

 
54 Stephen Boyd and Lieven Vandenberghe, “Geometric Problems, ” in Convex Optimization, Cambridge University 
Press, 2004. 
55 A classical treatment of neural networks is available in the “Deep Learning” chapter of Russell and Norvig, 2014. 
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There are no labels in this application, just collections of features that are assumed to be well 
modeled as Gaussian random variables. Applications include anomaly detection, for instance, to 
improve engine maintenance. Features might include temperature and vibration measurements 
associated with an engine. The model is trained using samples from engines that are in working 
condition. Then, the model can be used to detect characteristics that are statistically inconsistent 
with a working engine. 

Cluster Analysis 

In these applications, an algorithm is used to collect natural groupings of input data into 
distinct clusters without the aid of labels. One example is the K-means algorithm for categorizing 
inputs into the number K distinct clusters based on the Euclidean distance of each input data 
point to a mean value that defines each cluster. Typically, the K clusters are initialized to 
randomly selected mean values. Then, each data point from the input is assigned to the closest 
cluster. Once all the data points have been assigned, the mean value of each cluster is updated, 
and the algorithm iterates until either the maximum change in any given mean is below some 
threshold value or a maximum number of iterations is exceeded. A notional application might be 
market segmentation: A company collects information about the users of its products and uses 
cluster analysis to bin users into distinct use cases so it can optimize its business strategy based 
on user needs. 

Summary of Learning Applications 

As we have seen, in supervised learning, the model parameters are trained using specific 
labels, whereas with unsupervised learning, there are no labels, and the model parameters are 
trained to find relationships in the input data. Another variation is RL, during which the model 
parameters are trained to maximize rewards or minimize some type of penalty, also without the 
use of labels. In this variation, the model might incorporate a neural network, but rather than 
having labels, the model perceives its environment and takes actions based on the outcomes of 
trial and error. Google used this approach to automate the cooling of its data centers.56 

Computational Effort and Resources for Training  
One important measure of the computational effort required for training or inference is the 

number of FLOPs that are needed. Most computational systems represent real numbers using the 
Institute of Electrical and Electronics Engineers Standards Association’s standard for floating-
point arithmetic (IEEE-754, 2008).57 Adding, subtracting, multiplying, or dividing two floating-

 
56 Chris Gamble and Jim Gao, “Safety-First AI for Autonomous Data Centre Cooling and Industrial Control,” 
Google DeepMind, August 17, 2018. 
57 Institute of Electrical and Electronics Engineers, “754-2008: IEEE Standard for Floating-Point Arithmetic,” 
August 29, 2008. 
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point numbers all require about the same amount of computational effort. We call this effort one 
FLOP. Comparing two numbers might require a bit less effort, but we usually count the effort as 
one FLOP. The amount of effort for computing a square root is typically counted as 
approximately 5 FLOPs, and trigonometric functions are somewhere in the range of 15 to 20 
FLOPs, depending on the method and the range of the variables.  

Similarly, FLOPs per second (FLOP/s) provides a useful measure of the computational 
performance of a computing system and is used for important benchmarks for high-performance 
computing. For instance, in November of 2023, the Frontier system at Oak Ridge National 
Laboratory achieved 1.194 × 1018 FLOP/s using a combination of 8,699,904 combined central 
processing unit (CPU) and graphics processing unit (GPU) cores (Top500, 2023).58 Also, 
computational performance tends to scale linearly with input power; hence, FLOP/s per watt 
(FLOP/s/W) is also used as a measure of performance for computing systems. The Frontier 
system performance is 52.59 × 109 FLOP/s/W.59  

Compared with the multiple instruction and multiple data architecture of CPUs, the single 
instruction and multiple data architecture of GPUs are better suited to the types of computations 
associated with neural networks, and GPUs are widely used in the training and inference of large 
neural networks, including LLMs. As an example, consider the NVIDIA A100 Tensor Core GPU 
with 32-bit floating-point arithmetic. According to NVIDIA, each device is capable of 152 × 1012 
FLOP/s (NVIDIA, 2021).60 Typically, hundreds or thousands of these devices are employed to 
carry out computations in parallel for the purposes of training LLMs.61  

The amount of effort required for machine learning varies by algorithm and approach. There 
is a closed-form expression for the optimal solution to a linear least squares problem, and it 
requires mn2 + (1/3)n3 FLOPs using Cholesky factorization, where n is the number of model 
parameters and m is the number of samples in the training dataset.62 Logistic regression and 
support vector machine training do not have closed-form expressions, and iterative methods are 
required. Depending on the specific approach, each iteration requires approximately n3 FLOPs to 
compute the error function and one or two derivatives. Logistic regression and support vector 
machine training is a convex optimization problem,63 so there is a bound on the number of 
iterations that are needed to find a globally optimal solution. That bound is polynomial in the 

 
58 “Frontier Remains No. 1 in the TOP500 but Aurora with Intel’s Sapphire Rapids Chips Enters with a Half-Scale 
System at No. 2,” Top500, undated. 
59 “Frontier Remains No. 1,” undated.  
60 NVIDIA, “NVIDIA A100 Tensor Core GPU,” data sheet, June 2021. 
61 Executive Order 14110 set reporting requirements for (1) any computing cluster in a single data center having a 
theoretical maximum computing capacity of 1020 FLOP/s or greater for training AI and (2) any model that was 
trained using 1026 or more FLOPs (Executive Order 14110, “Safe, Secure, and Trustworthy Development and Use of 
Artificial Intelligence,” Executive Office of the President, October 30, 2023). 
62 Boyd and Vandenberghe, 2018, pp. 191, 231.  
63 For more information about convexity and its implications, see Boyd and Vandenberghe, 2004. 
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number of parameters, number of samples in the training dataset, and number of desired digits of 
accuracy. In practice, 20 to 50 iterations are required.64  

For many supervised machine learning algorithms, including neural networks which are 
emphasized in this report, training involves the minimization of a so-called “loss” function. 
While there are several variations, commonly used loss functions are the squared error between 
the model prediction and the label, or a variation called log loss, which is derived from 
maximum likelihood estimation. Training of a neural network involves minimizing the loss 
function typically using a variation of the gradient descent method.65 It also involves evaluating 
both the loss function using a technique called forward pass and its derivative using a technique 
called backward pass (these names derive from the direction of the computation relative to the 
input layer and output layer). The computational effort of each pass (forward and backward) is 
4n FLOPs for a total of 8n, where n is the number of parameters in the neural network.66 The 
calculations could be conducted in parallel and the effort divided across computing devices. As 
an example, consider a fully connected neural network with an input layer and an output layer 
each having 49,152 neurons and 96 hidden layers having 12,288 neurons each. Then the total 
number of parameters would be  

n = 2 × 49,152 × 96 × 12,288 ≈ 116 × 109.  

This is about two-thirds of the 174.6 × 109 parameters associated with OpenAI’s Generative 
Pretrained Transformer 3 (GPT-3) LLM.67 Hence, training an LLM such as GPT-3 requires 
about 8 × 174.6 × 109 = 1.3968 × 1012 FLOPs per iteration.  

How many iterations are needed? Unfortunately, training a neural network is a nonconvex 
optimization problem and, as a result, there is no polynomial bound on the number of iterations 
and no guarantee that the algorithm will converge to a globally optimal solution. Fortunately, the 
performance of neural networks on their intended tasks tends to have excellent performance 
compared with competing methods (including humans) despite the implications of suboptimal 
training. Typically, LLMs, such as GPT-3, are trained with one iteration each on every piece of 
data in their corpus. The data are divided into chunks of text called tokens. OpenAI reported that 

 
64 See “Unconstrained Minimization” and “Interior-Point Methods” in Boyd and Vandenberghe, 2004. 
65 See “Unconstrained Minimization” in Boyd and Vandenberghe, 2004. 
66 Dzmitry Bahdanau suggests that, theoretically, 6n total FLOPs are needed but suggests that 8n is a better estimate 
to use because of practical details that almost always apply (Dzmitry Bahdanau, “The FLOPs Calculus of Language 
Model Training,” Medium, January 9, 2022).  
67 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind 
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al., “Language Models Are Few-Shot Learners,” 
arXiv, version 4, July 22, 2020, p. 46.  
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GPT-3 was trained on approximately 300 billion tokens, occupying 570 gigabytes of storage.68 
Hence, the training effort required is about 300 × 109 × 8 × 174.6 × 109 = 4.2 × 1023 FLOPs. 

Suppose the computations are parallelized across 1,024 NVDIA A100 GPU devices, each 
capable of 152 × 1012 FLOP/s. Then the computational effort associated with the FLOPs for 
training an LLM such as GPT-3 would require 4.2 × 1023 / (1,024 × 152 × 1012) = 2,698,396.4 
seconds, which is about 31 days. 

Other Factors and Resources Contributing to Training Time 
FLOPs account for only a portion of the actual training time. Lucia Mocz estimates total 

training time as the time required for the FLOPs, plus a factor Mocz refers to as bandwidth and a 
factor for overhead (which we cover in the next paragraph).69 Bandwidth accounts for the time 
required to move the data from input storage and through the parallel processing architecture. Let 
TB denote the total time associated with bandwidth. Mocz estimates this as  

TB = NBNUS(Nn − 1) / R  

where NB is the number of bytes used to represent each model’s parameters, NU is the number of 
update transfers, S is the size of the update for each processing node, Nn is the number of 
processing nodes in the parallel processing architecture, and R is the data transfer rate in bytes per 
unit time. The training data for LLMs are loaded or updated in batches. Hence, if NT denotes the 
total number of tokens in the training data, and B denotes the batch size in tokens, then the number 
of updates is NU = NT / B. The size of the update per processor is calculated as S = NBNp / Nn. As a 
numerical example, consider again a model such as GPT-3 with NT = 300 × 109 tokens, Np = 
174.6 × 109 parameters, and processed on a system employing Nn = 1,024 GPUs. According to 
OpenAI, this model was trained with a batch size of B = 3.2 × 106 tokens. Hence, the number of 
updates is NU = 300 × 109 / (3.2 × 106) = 93,750. Assume that we use NB = 2 bytes to represent 
each parameter; then, the size of the update for each processing node is  

S = 2 × 174.6 × 109 / 1,024 = 341,015,625 bytes.  

Mocz assumes a transfer rate of R = 2 × 1011 bytes per second, though the source of this 
assumption is not explained. Using this example data, we find that the bandwidth contributions 
to training time is  

TB = 2 × 93,750 × 341,015,625 × 1,023 / (2 × 1011) ≈ 327,535 seconds,  

 
68 Brown et al., 2020, p. 46. 
69 Lucia Mocz, “Performance Bottlenecks in Deploying LLMs—a Primer for ML Researchers,” Medium, May 10, 
2023.  
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which is about 3.8 days. 
Mocz describes overhead factors as relating to additional computational costs associated 

with synchronization, coordination, and communication during training that are not related to the 
bandwidth or FLOPs, and she finds that the overhead does not scale with model size. No details 
are provided for estimating overhead related delays, but in the examples for an LLM with 65 
billion parameters and 1.4 trillion tokens, it is suggested that the overhead delays are between 6 
and 11 days.  

Hence, if we add together the 31 days required for FLOPs, with the 3.8 days of bandwidth, 
and 6 to 11 days overhead delay for our GPT-3 example (174.6 billion parameters and 300 
billion tokens), then the total training time is estimated to be between 41 and 46 days. 

Another factor that contributes to training time is sample efficiency. An algorithm is sample 
efficient if it can get the most out of every training sample. A related concept is the sample 
complexity, which, in machine learning, is “how many examples are required to guarantee a 
probably approximately correct solution,”70 and the sample complexity depends on the desired 
accuracy and confidence that is needed in a given application. 

Computational Effort and Resources Required for Inference 
For simple machine learning models (such as least squares, logistic regression, and support 

vector machines), inference involves a simple inner product of an input vector with the vector of 
model parameters, which requires approximately 2m FLOPs, where m is the number of model 
parameters (more precisely, it requires m multiplications and m − 1 additions which is 
approximately 2m for large m).  

For neural networks, including LLMs, interference requires conducting a single forward 
pass; hence, it requires about 4n FLOPs where n is the number of model parameters. Consider 
again our GPT-3 example with 174.6 × 109 parameters. If we apply the same architecture using 
1,024 A100 processors for inference, then the estimated time for the computations would be  

4 × 174.6 × 109 / (1,024 × 152 × 1012) ≈ 4.5 × 10−6 seconds  

for a single inference. If we have a 40 token prompt (which is likely about 30 words), this should 
take approximately 1.8 × 10−4 seconds. This amount of effort is trivial compared with the effort 
required for training. As a second example, consider a desktop computer with a performance 
specification of 20 × 109 FLOP/s/W and an input power of 75 watts. The estimated time for the 
computations would be  

 
70 Shai Shalev-Shwartz and Shai Ben-David, Understanding Machine Learning: From Theory to Algorithms, 
Cambridge University Press, 2014, p. 44. 
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4 × 174.6 × 109 / (20 × 109 × 75) ≈ 0.467 seconds  

for a single inference, or about 19 seconds for a 40-token (30-word) prompt. 

Measuring Performance for Tasks 
Evaluating the loss function used for training a machine learning model with the training data 

provides a measure of how well the model fits the data for a given task, but this does not provide 
a useful measure of how well the model will generalize to new data for that task. For this reason, 
datasets are often divided into subsets for training and cross-validation and a third subset for 
fine-tuning. Evaluating the loss function with the cross-validation set provides an estimate of 
how well the model will generalize to new data. And comparing performance of the model with 
the training and cross-validation sets can provide useful insights about whether the model is 
poorly fit (called bias), overfit (called variance), or appropriately fit. The comparison can also 
yield insights about the size of the training dataset and diminishing returns on increasing the size. 

For detection and classification problems, we may use sample statistics related to probability 
of success with a cross-validation set as a measure of performance. For instance, probability of 
detection versus false alarm rate, or probabilities of Type I errors (false positives) and Type II 
errors (false negatives) using sample statistics. In some cases, we might want to compare these 
algorithm-obtained measures with human performance on the same task or compare the 
performance of two competing algorithms. For instance, we could take the probability of 
detection and false alarm rate sample statistics of detecting a target from radar imagery using an 
algorithm and compare it with human analysts.  

In machine learning applications to zero-sum games, we might measure the performance of 
two algorithms or the performance of an algorithm versus a human using a relative rating system, 
such as the Elo system.71 Elo is a method of calculating the relative skill of two players. It was 
invented for chess and is intended to predict the outcome of a match assuming a normal 
distribution: A player with a rating that is 100 more than their opponent has a 64-percent chance 
of winning; with a rating that is 200 more, the chance of winning increases to 76 percent. The 
Elo system is used to compare the chess performance of AI algorithms with humans or with 
other algorithms. It is also used to assess algorithms performing the board strategy game Go. 

A wide variety of techniques are used to evaluate the performance of LLMs. The 
performance of deployed LLMs has been measured on standardized exams that are designed for 
humans, such as college entrance examinations, software coding challenges, and bar exams. 
GPU utilization metrics are used, such as counting the number of prompt and completion tokens. 
In some applications, we are interested in measures of human preferences, which are highly 
subjective but can be measured using survey techniques. For instance, we can provide a set of 

 
71 Grace, 2013. 
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prompts to two competing algorithms and survey a group of human reviewers to measure their 
preferences.72  

Of course, we are also interested in the performance of an algorithm for a given task relative 
to the amount of resources needed for training or inference. Questions such as the following are 
relevant to such an assessment: For a given level of performance on a specific task, how many 
FLOPs were needed to train the model? How much data storage is required? How long did it 
take? 

Finally, we might also be interested in the flexibility of a machine learning algorithm to 
perform a variety of tasks, how well it performs in each, and how many resources are required 
compared with other alternatives.  

 
72 Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard, Johan Ferret, Kellie Lu, Colton Bishop, Ethan 
Hall, Victor Carbune, Abhinav Rastogi, et al., “RLAIF: Scaling Reinforcement Learning from Human Feedback 
with AI Feedback,” arXiv, version 2, December 1, 2023. 
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Appendix B. Survey of Mechanisms for Algorithmic Advancement 

This appendix describes the mechanisms that we identified for algorithmic advancement 
from various computational fields. We reviewed classes of algorithms from numerical analysis, 
operations research, and computer science to identify paths by which algorithms changed; our 
intent was to identify key mechanisms that could be relevant to advances in AI. We identified the 
classes of algorithms by reviewing standard textbooks from these fields,73 so this appendix 
should be thought of as more of a survey than a comprehensive and exhaustive examination of 
the algorithms in these spaces.  

For each specific class of algorithm, we reviewed specific algorithms described in the 
textbooks and compared them to understand the specific mechanism that explains the 
distinctions. We then sorted these mechanisms into groups that could be useful for exploring 
paths for AI algorithms to advance (as discussed in Chapter 3). 

Numerical Analysis  

Approximation and Interpolation 

The goal of approximation is to closely match the behavior of a function with a 
computationally simpler function. Relatedly, interpolation is the process of estimating function 
values between data points.74 We found that the primary distinction between different 
approximation and interpolation algorithms related to either the types of data used or the data 
quality and the objective function (or error measure) used. 

Data Types and Data Quality  

There are a variety of classes of interpolation that vary based on the desired fit of the 
solution. For example, Lagrange interpolation finds a polynomial that exactly matches a set of 
data points. Hermite interpolation extends Lagrange interpolation by matching both the position 
of the data points but also some number of derivatives at those points. Thus, if more information 
about the data points is available, then Hermite interpolation can use that to better match all 
available information. This improved fit comes at a cost. For n data points, Lagrange 
interpolation will produce a polynomial of degree n − 1 or less, while Hermite interpolation will 
have a polynomial of degree (m + 1) × (n − 1), where m is the number of derivatives included. 

 
73 We specifically used Anthony Ralston and Philip Rabinowitz, A First Course in Numerical Analysis, 2nd ed., 
Dover, 2001; J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, 3rd ed., Springer, 2002; Richard L. 
Burden and J. Douglas Faires, Numerical Analysis, 9th ed., Brooks/Cole, 2011; and Cormen et al., 2009. 
74 See “Interpolation and Polynomial Approximation” in Burden and Faires, 2011. 
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Additionally, it is important to note that, as the degree of the polynomial increases, the stability 
of the values might decrease, and this can be particularly problematic for any extrapolation using 
the polynomials. 

Relatedly, Fourier transforms are a way of identifying the frequencies in a set of data. So, for 
data on frequencies (e.g., waves of sound, light, or matter) Fourier transforms can find the best 
fitting wave function as opposed to the best fitting polynomial for Lagrange or Hermite 
interpolation.75  

Objective Function 

One commonly used approach in approximation is the least squares approach in which the 
objective of the algorithm is to identify the function that minimizes the sum of the square of the 
error. This is widely used in statistics, at least in part because it is not computationally intensive. 
Alternative approaches include Chebyshev polynomials for which the goal is to minimize the 
maximum error or minimize the sum of the error. In each of these cases, the algorithm differs 
because the goal of the approach is different. In some cases, the result will be relatively close, 
but in other cases, the outputs of the algorithms can differ wildly. Ultimately, the selection of the 
objective function should be made based on the intended use of the analysis. 

Systems of Linear Equations 

Systems of linear equations take the form of Ax = b, where A is a matrix, and x and b are 
either vectors or matrices. These methods are foundational to other numerical analysis methods, 
including least squares approximation and solutions to partial differential equations.76 These 
methods can be either direct or iterative. The algorithms for solving these equations differ based 
on the structure of the matrices (specifically, the structure related to sparsity), stability in the 
accuracy of solutions, or the number of iterations involved. 

Sparsity 

There are a variety of special methods for directly solving linear equations more quickly than 
the most basic Gaussian elimination.77 Many of these methods rely on sparsity within the matrix. 

 
75 Richard Haberman, “Infinite Domain Problems—Fourier Transform Solutions of Partial Differential Equations,” 
in Elementary Applied Partial Differential Equations with Fourier Series and Boundary Value Problems, 2nd ed., 
Prentice-Hall, 1987. 
76 See “Boundary-Value Problems for Ordinary Differential Equations” and “Numerical Solutions to Partial 
Differential Equations” in Burden and Faires, 2011. 
77 Yousef Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing, 1996. Many of these methods are 
described in the Linear Algebra Package (LAPACK). LAPACK contains optimized functions for various classes of 
matrices and other linear algebra structures. For more information, see E. Anderson, Z. Bai, C. Bischof, J. Demmel, 
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, “LAPACK: A Portable 
Linear Algebra Library for High-Performance Computers,” Supercomputing ’90: Proceedings of the 1990 
ACM/IEEE Conference on Supercomputing, May 1990. 
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If there are patterns in the nonzero values of the matrix (e.g., a banded matrix has nonzero values 
in diagonal bands but the matrix’s elements are otherwise zero and an upper-triangular matrix 
has zeros in every cell below the main diagonal), then specially designed algorithms can take 
advantage of those.  

By taking advantage of these symmetries, the computational cost is reduced loosely 
proportionally to the square of the number of nonzero elements, and the storage costs are 
proportional to the number of nonzero elements. 

Iterative Methods 

Instead of solving the whole problem at once, iterative methods are simpler steps that are 
repeated to solve the system of equations. Each step in the iteration lowers the error, and, if the 
process continues n steps, then the exact solution of x is found (the solution with zero error). 
However, in some cases, the goal might not be to get the exact solution but rather find the 
solution such that the error is below a given threshold. In those cases, some degree of accuracy 
can be sacrificed for a reduction in the computational cost.  

Differential Equations 

Differential equations are a class of problems for which the rate of change of a system is used 
to estimate the state of the system based on either the initial state of the system or on the state of 
the system at the boundaries. The distinction between algorithms for differential equations will 
typically come from trade-offs related to the stability of the solution and the functional forms 
used to approximate the solution. 

Stability 

For initial value problems (IVP), one concern is the stability of the solution. There is a trade-
off between the resolution and the stability. In other words, for small step sizes, the solutions 
tend to be less stable because the errors compound. This lack of stability manifests when small 
differences in the initial conditions result in relatively larger differences as the step size 
decreases. IVP algorithms trade off between resolution and stability. 

Functional Forms 

For partial differential equations, one class of algorithms are finite element methods in which 
the domain is partitioned by a mesh, and, for each cell in the mesh, a basis function is evaluated. 
In some cases, it is possible to take advantage of symmetries in the underlying problem to reduce 
dimensions (e.g., using rotational symmetry to reduce a problem of three spatial dimensions into 
two spatial dimensions in cylindrical coordinates).  

Another source of efficiency can be found through a careful selection of the basis functions. 
For example, if the basis functions are orthogonal to all but the adjacent elements, then the 
matrix will be sparse and, therefore, solvable quickly relative to a dense matrix. 
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These approaches will generally reduce the computational cost proportional to the reduction 
in dimensions for symmetries and the degree of sparsity if orthogonality can be applied to 
introduce systematic sparsities.  

Nonlinear Equations 

Nonlinear equations take the form F(x) = b, in which x and b can be vectors or matrices and 
F is a function. While F is assumed to be continuous and differentiable for many algorithms, in 
some cases a suitable subgradient can substitute for a derivative in the algorithm.78  

Newton’s method, a root-finding algorithm, converges quadratically when the estimate of x is 
sufficiently near a solution to the nonlinear equation, but it requires the calculation of first and 
second derivatives, which could be computationally expensive for some functions.79 
Alternatively, quasi-Newton methods converge more slowly (generally super-linearly) but rely 
on estimates of the first derivative rather than a functional evaluation. Thus, for these nonlinear 
algorithms, there is a trade-off between the rate of convergence and computational complexity.  

Operations Research 

Constrained Optimization 

Constrained optimization is a class of problems that can generally be written as 
minimize(F(x)), in which x is a vector subject to constraints such as G(x) ≤ a or H(x) = 0. 
Algorithms in this space vary based on the functional forms involved. 

Functional Forms 

There are a variety of special cases of constrained optimization that depend on the functional 
form of F, G, and H.  

If F and G are convex functions and H is a linear function, then this is a convex optimization 
problem that can be solved with polynomial time complexity using an interior point method.80 
Otherwise, the problem is nonconvex and has no known polynomial-time solution. The case in 
which x is constrained to be integer-valued is also nonconvex.  

Stochasticity 

Constrained optimization problems may use stochastic factors.81 One example of this for 
optimization would be random (or quasi-random) sampling. The user inputs the number of cases 

 
78 Vladimir F. Dem’yanov and Leonid V. Vasil’ev, Nondifferentiable Optimization, Optimization Software Inc., 
1985. 
79 Boyd and Vandenberghe, 2004, pp. 484-496. 
80 Boyd and Vandenberghe, 2004. 
81 Boyd and Vandenberghe, 2004,  pp. 305–317. 
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that they would like to test (n), a set of n vectors is generated, x1 − n that meet the constraints in 
G and H, the function F is evaluated for each xi, and the maximum is selected from that set as an 
approximation of the maximum. As n grows, the gap between the actual optima and the 
estimated optima decreases. Alternatively, because a truly randomly generated set of vectors 
might not be evenly distributed across the solution space, quasi-random numbers are used to 
ensure that the solution space is spanned. 

Traveling Salesman Problem 

The traveling salesman problem seeks to identify the shortest route that connects a series of 
points in a closed loop. This problem is also known to be NP-hard, so there are a variety of 
algorithms and heuristics that are used to provide exact or approximate solutions. Many 
approaches seek to minimize the distance travelled by generating an initial solution and then 
iteratively improving upon it. Some of these iterative approaches use metaheuristics (such as 
simulated annealing) that use randomness. For these cases, the key mechanisms for improvement 
would be trade-offs related to the iterations and the application of stochasticity to move away 
from local optima. 

Computer Science 

Compression 

The goal of compression is to reduce the number of bytes required to store a file. In general, 
compression can be categorized as either lossless or lossy. With lossless compression, no 
information content is lost, and the original data can be fully recovered.82   

 
82 Khalid Sayood, Introduction to Data Compression, Morgan Kaufmann Publishers, 1996. 
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Appendix C. Implications for Hardware Export Controls 

Through a series of executive orders and updated export control rules that were instituted in 
October 2022, October 2023, December 2024, and January of 2025,83 the United States imposed 
constraints on the types of chips that can be sold to entities in the People’s Republic of China. 
One rationale for these hardware restrictions is to help the United States retain dominance in the 
AI space. However, this raises an important question: Does the pace of algorithmic advancement 
mean that the hardware constraints are likely to be less effective in helping the United States and 
allied nations retain dominance in AI? 84 

Constraints on computing power most acutely affect the ability to train large foundation 
models, but they also reduce the ability to conduct experimentation using smaller models. In this 
appendix, we explore the question of the effectiveness of hardware constraints through the 
projections of the three futures described in Chapter 4. 

In the Data Limitations Are Binding and Diminishing Returns to Scale scenarios, because the 
largest frontier models do not perform much better than smaller, more-focused models, the 
demand for computing capacity for training would likely be focused on the smaller models. 
Thus, the hardware export restrictions would primarily affect the advancement of foreign frontier 
models by limiting the ability to experiment. In practice, that could reduce the ability of models 
to innovate, but if ideas related to algorithms continue to be shared in scientific forums,85 the net 
effect of a hardware ban on the ability of targeted countries to develop near-frontier models 
would likely be minimal. There is evidence that researchers in China have been able to identify 
and deploy the algorithmic advances made by frontier firms, so even the reduced computational 
budget for experimentation might not be effective.86 

In the Scaling Continues scenario, the performance of the largest frontier models grows 
rapidly, and there is significant demand for computing power at the training stage. At the same 

 
83 Bureau of Industry and Security, “Commerce Strengthens Restrictions on Advanced Computing Semiconductors 
to Enhance Foundry Due Diligence and Prevent Diversion to PRC,” Office of Congressional Affairs, January 15, 
2025. 
84 The advancements claimed by DeepSeek-V3 in December of 2024 might suggest that hardware constraints are 
less important than previously thought. DeepSeek-V3 was unveiled in December of 2024 (well after we conducted 
our research for this report), and their technical report describes improvements with multi-head latent attention, a 
new strategy for load balancing, and a multi-token prediction training objective, as well as SFT and reinforcement 
stages after initial training (DeepSeek-AI et al., 2024). 
85 We observe that some frontier AI model companies (such as OpenAI) are publishing relatively little about their 
algorithmic advances. 
86 Zhiyuan Zeng, Qinyuan Cheng, Zhangyue Yin, Bo Wang, Shimin Li, Yunhua Zhou, Qipeng Guo, Xuanjing 
Huang, and Xipeng Qiu, “Scaling of Search and Learning: A Roadmap to Reproduce o1 from Reinforcement 
Learning Perspective,” arXiv, version 1, December 18, 2024. 
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time, the performance of the largest models of the prior generation could be duplicated with 
much less computing power. In this environment, the export controls would greatly restrict the 
ability for frontier AI models to be developed in the targeted countries. However, depending on 
the nature of the scaling involved and the growth of algorithmic efficiency, models developed in 
targeted countries could be as large as the frontier models developed in countries with full access 
to hardware a year or two prior, that is, if researchers in the targeted countries were aware of 
current advancements.87 

Another set of considerations for assessing the efficacy of hardware constraints relates to the 
delivery mechanism for an AI system. Specifically, whether a model is open (either open-source 
or open-weight) or whether inference is delivered through a closed-source model will determine 
who bears the computational costs for inference. With a closed-source model, the developer is 
responsible for obtaining the computational capacity; with an open model, the user or another 
party can run the model on their own hardware. Similarly, if developments in algorithms push 
toward more test-time compute,88 then the burden for delivering the computational capacity will 
depend on whether a model is open or closed. Hardware constraints may push toward more open 
models to the extent that open models can be supported through a business case. 

The bottom line is that the efficacy of hardware constraints on the ability of targeted 
countries to develop AI depends, in large part, on the nature of algorithmic advances. The more 
those advances are biased toward larger models through relaxing data constraints, generating 
synthetic data, and more efficiently leveraging data, the more impactful hardware constraints will 
be on AI work in targeted countries.  
  

 
87 More-recent estimates related to DeepSeek estimate this timeline to be between seven and ten months (Dario 
Amodei, “On DeepSeek and Export Controls,” blog, January 2025). 
88 Test-time compute is a class of approaches where the response to a prompt is refined iterative during inference. 
Test-time compute requires much more computation during the inference phase than model that rely on the initial 
outputs of an LLM. 
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Appendix D. Case Study of Reinforcement Learning from Human 
Feedback 

In this appendix, we discuss several studies that examine the efficacy of various approaches 
to RL for AI models. 

Background and Context 
In RL, the model parameters are trained to maximize rewards or minimize some type of 

penalty without the use of labels. Figure D.1 provides a diagram of the approach. Rather than 
having labels, the model perceives its environment and takes actions based on the outcomes of 
trial and error. At each time step t, the RL algorithm generates an action denoted At, which 
updates the state of the environment, denoted St. The state of the environment is provided as an 
input variable for a reward function which generates a reward denoted Rt. The reward and state 
are used to update the parameters of the RL. 

Figure D.1. Reinforcement Learning 

 

But what happens if there is no clear reward function or if the reward function is difficult to 
assess? For example, consider the task of training a robot to cook an egg or drive a car. What 
numerical reward could you provide after short time steps that would incentivize the robot to 
learn the task? Notionally, we could have a human supervisor monitor the state of the 
environment after each time step and employ human judgment to generate a numerical reward or 
label to use for reinforcement, as shown in Figure D.2. Unfortunately, most robotic tasks require 
large numbers of time steps that are very short in duration and would require vast numbers of 
human generated samples, which would be too time-consuming and expensive to be practical. 
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Figure D.2. Human-Supervised Reinforcement Learning 

 

Reinforcement Learning from Human Feedback to Improve Sample 
Efficiency 
An alternative to the supervised RL approach is to substitute the human supervisor with a 

reward model that has been trained on a smaller set of human samples, as shown in Figure D.3. 

Figure D.3. Reinforcement Learning with Human Feedback 

 

Christiano et al. compared the supervised approach with RLHF for training a deep neural 
network to play Atari video games (such as Pong) and for simulated robotic locomotion tasks. 
Quantitative reward functions exist for these applications, but the authors demonstrate how RLHF 
can be used without access to the reward functions and compare the results of RLHF with RL and 
with supervised RL approaches. In their research, human supervisors do not directly provide 
quantitative rewards. Instead, human supervisors are provided with pairs of short video clips 
(usually 1 to 2 seconds long) of changes to the state of the environment produced from an action. 
The authors refer to the video clip activity as a trajectory. The human supervisor judges whether 
either of the trajectories is useful for accomplishing the task and, if so, which of the two trajectories 
is preferred. The results of the human preference samples are used to generate a reward.89  

 
89 Christiano et al. point out that their approach does not require human supervisors with expertise in performing the 
task. Instead, their approach only requires humans who can judge useful trajectories (Christiano et al., 2023). 
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Figure D.4 shows the results from Christiano et al. for the Atari game Pong. The horizontal 
axis of the figure shows the time step, and it appears that there are about 50-million time steps. 
The vertical axis shows the numerical reward; the paper does not provide any additional details 
about the units or an interpretation, but, presumably, the reward is related to score in the game. 
The different color curves denote the reward for different options in training the algorithm. The 
orange curve shows the performance of RL using the true reward, and we see that the reward 
asymptotically reaches a maximum of 20 at approximately 10-million time steps. The purple line 
shows the performance of the human-supervised approach using 5,500 samples of human labels. 
From the plot, we see the human-supervised approach asymptotically reaches the reward peak of 
20 at approximately 29-million time steps. The other colored lines all correspond to RLHF 
without access to the true reward and trained using 5,500 samples of human labels. We see that 
with 3,300 synthetic labels, the RLHF performance is already similar to that of the human-
supervised approach. Furthermore, with 5,500 or more synthetic labels, the reward of RLHF 
reaches a maximum of 20 in approximately 13-million time steps compared with 20-million time 
steps for the human-supervised approach. Hence, the number of time steps needed to reach the 
maximum reward is reduced by 55 percent. That is, the sample efficiency of RLHF for this 
example is improved by 55 percent compared with the human-supervised approach. 

Figure D.4. Reinforcement Learning from Human Feedback Performance in Learning Pong 

 

SOURCE: Adapted from Christiano et al., 2023, p. 8. 
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Christiano et al., 2023 state that generating the human labels for the Atari example required 
about 5 hours of human labor. Furthermore, they indicate that the cost of training the RLHF was 
about 1-GPU day, and the cost of computing resources and human labor were about equal. This 
suggests that there would be diminishing returns from generating more samples to train the 
reward function for this example. 

The Christiano et al. paper has results for Atari games in which RLHF and the human-
supervised approach fail to reach the reward obtained with RL (e.g., for the game breakout). 
They also have results for Atari games in which the human-supervised or RLHF approaches 
reached a higher reward than RL. Unfortunately, very little information is provided in the paper 
to explain these results. Furthermore, because many real-world problems have more dimensions 
than an Atari game, the findings in their paper might not scale.  

Reinforcement Learning from Human Feedback to Align Behaviors with 
Human Preferences and Values 
In the previous section, we provided an example in which RLHF could be used for RL 

without access to a true reward function and suggested that this can improve sample efficiency 
compared with using human labels. In this section, we provide an example showing how RLHF 
can be used as an alternative (or in addition to) SFT for aligning an LLM with human 
preferences in a summarization task. The summaries generated using the RLHF approach are 
preferred by human judges to those generated using SFT alone, even with a smaller model for 
RLHF.  

First, we provide a high-level description of SFT and RLHF as applied to LLMs. The red box 
on the left in Figure D.5 provides an overview of SFT. Assume you have an LLM such as GPT-3 
that has been pretrained, and you want to optimize the resulting policy for downstream tasks. In 
particular, suppose you want to optimize the LLM policy for generating human reference 
summaries and align it with human preferences. Retraining the policy from scratch could be cost 
prohibitive. The process for SFT is to generate a dataset of prompts for summaries, have human 
labelers demonstrate the desired response, and then fine-tune the policy using supervised 
learning. The blue box on the right in Figure D.5 provides an overview of RLHF for this 
application. Several outputs of the pretrained LLM (or, alternatively, the pretrained LLM that has 
had SFT applied to it) are generated for each sample prompt. Human labelers rank the outputs 
from best to worst. The samples of prompts and ranked outputs are then used to train a reward 
model. Next, policy is updated using RL with the trained reward model. Typically, a proximity 
policy optimization approach is used for the RL, which optimizes the policy for the designated 
task while ensuring the optimized policy does not move too far away from the original policy. 
For instance, one approach is to generate a prompt from the dataset and responses from the 
reward model and policy. Then, a measure known as the Kullback-Liebler divergence is assessed 
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over sequences of the tokens of the responses, and a gradient is used to update the weights of the 
policy to move them in the direction of the reward.90 

Figure D.5. Overview of Supervised Fine-Tuning and Reinforcement Learning from Human 
Feedback as Applied to a Large Language Model 

 

SOURCE: Reproduced from Cameron R. Wolfe, “Understanding and Using Supervised Fine-Tuning (SFT) for 
Language Models,” Deep (Learning) Focus blog, September 11, 2023, adapting a figure from Ryan Lowe and Jan 
Leike, “Aligning Language Models to Follow Instructions,” OpenAI, January 27, 2022.  

Stiennon et al., 2022 surveyed human judges to learn their preferences for human reference 
summaries produced by a pretrained LLM.91 They asked the judges to assess summaries from 
three sources: (1) an LLM with no SFT and no RLHF,  2) an LLM with SFT and no RLHF, and  
3) an LLM with both SFT and RLHF. The LLM had been pretrained on a large corpus of text. 
The researchers used four different model sizes in each case: 1.3-billion parameters, 2.7-billion 
parameters, 6.7-billion parameters, and 12.9-billion parameters. The SFT was based on the 
Reddit too long; didn’t read (TL;DR) dataset of summaries (which they note required 320-GPU 
days for the 6.7-billion parameter model). They trained a reward model based on human 
preferences between pairs of summaries that required thousands of hours of labeler labor. Human 

 
90 For more details, see Nathan Lambert, Louis Castricato, Leandro von Werra, and Alex Havrilla, “Illustrating 
Reinforcement Learning from Human Feedback (RLHF),” Hugging Face, December 9, 2022. 
91 Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford, Dario 
Amodei, and Paul Christiano, “Learning to Summarize from Human Feedback,” arXiv, version 3, February 15, 
2022. 
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judges were provided summaries from the pretrained LLM, both the SFT and RLHF variants, 
and asked to indicate their preferences.  

Figure D.6 shows the results from Stiennon et al. The horizontal axis shows the model size. 
The vertical axis shows the fraction of summaries (averaged) that judges preferred from the 
pretrained LLM (cyan colored line), SFT (green colored line), and RLHF (orange colored line) 
variants. Note that their RLHF variant used the SFT variant as the baseline (that is, the RLHF 
variant had also undergone SFT). Apparent from the results is the fact that the authors assess 
only the RLHF variant for model sizes of 1.3- and 6.7-billion parameters. We observe from the 
results that the human judges had a strong preference for the RLHF-generated summaries 
compared with those generated from the SFT or pretrained LLM. In fact, summaries generated 
by the 1.3-billion parameter RLHF model were preferred to the summaries generated by the 
12.9-billion parameter pretrained LLM and SFT models. These results show that RLHF 
improved the alignment of the LLM for the summary task, even when using a model that is an 
order of magnitude smaller. 

Figure D.6. Human Judges Preferred Reinforcement Learning from Human Feedback Summaries, 
Even with Smaller Model Sizes 

 
SOURCE: Reproduced from Stiennon et al., 2022, p. 2. 

Other research suggests that, although RLHF might be very effective at aligning an LLM to 
human preferences, there could be performance trade-offs involved. In particular, Kirk et al., 
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202492 define out-of-distribution (OOD) generalization as a metric on the reliability of a model 
outside the distribution of the training data. They define output diversity (OD) as a measure of 
the diversity of the output distribution in open-ended domains such as storytelling. The results of 
their research suggest that LLMs trained with RLHF improve OOD compared with SFT but at 
the expense of OD performance. 

Summary 
In sum, research suggests that RLHF algorithmic improvements 

• include improved sample efficiency 
• include improved performance in aligning policies with human preferences, even for 

smaller model sizes 
• are application-specific and involve trade-offs 
• require human labelers and compute resources. 

How similar are these improvements to improvements from computer hardware advances? 
Improvements in sample efficiency and improvements to alignment with human preferences for 
smaller model sizes have some similarities to the speedups in compute that result from hardware 
improvements. But RLHF provides some additional, qualitative improvements to LLMs that do 
not have a clear analog to hardware advances. 
  

 
92 Robert Kirk, Ishita Mediratta, Christoforos Nalmpantis, Jelena Luketina, Eric Hambro, Edward Grefenstette, and 
Roberta Raileanu, “Understanding the Effects of RLHF on LLM Generalisation and Diversity,” arXiv, version 3, 
February 19, 2024. 
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Abbreviations 

AI artificial intelligence 
GPT-3 Generative Pretrained Transformer 3 
FLOP floating point operation 
FLOP/s floating point operations per second 
GPU graphics processing unit 
LLM large language model 
MoE mixture-of-experts 
RL reinforcement learning 
RLHF reinforcement learning from human feedback 
SFT supervised fine-tuning 
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